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1.MOTIVATION

Estimating effective permeability kq¢ is central to filtration,
batteries, and composites.

Direct Darcy/Laplace solves are accurate but expensive at scale.

Goal: a fast, physics-consistent GNN surrogate for ks .




2. PHYSICAL SETUP

Domain: binary porous layouts 24 X 24.
Dirichlet BCs: P = 1(left), P = O(right).
If no left—right connectivity = k. = 0.

Ground truth k¢ :discrete Darcy/Laplace + flux.




3. DATA GENERATION

Bernoulli percolation (open cell with prob. p).
Training base: p € [0.40, 0.80].
Tails for robustness:[0.40, 0.40], [0.80, 0.90], [0.90, 0.97].

Graph: nodes = open cells; edges = 4-neighborhood.




4. GROUND-TRUTH PIPELINE

Remove components not touching boundaries.
If LR disconnected = k.= 0.
Solve discrete Laplacian for P.

Flux through right boundary = k.¢ (proper normalization).




5. GRAPH FEATURES

Degree; normalized degree.

Coordinates (x/W y/H).

Global porosity; local porosity (5x5 average).
Distances to left/right boundaries (normalized).
Normalized graph distance to right boundary.

Readout: sum pooling.




6. MODEL

2-layer GCN (sparse message passing) + MLP head.
Dropout: 0.15.
Target: for scale stability.

Loss: Huber (6 = 0.1)

Early stopping by Rlzogkon validation.




GCN surrogate architecture

Node features (9) GCN layer 1 GCN layer 2 Readout
deg, deg_norm, x/W, y/H _’, H, = ReLU(A X W) _’, H, = ReLU(A H, W,) _’, Sum pooling
@_global, ¢_local, dist_L, dist_R Dropout 0.15 Dropout 0.15 g=ZiHi]

graphDist - R

Graph structure MLP head
A (4-neighb.) + | RelLU — Linear — ReLU — Linear
A=D""2(A+l) D2 y =z =log(1+k)
Notes: Loss
- sparse message passing with A; training on z = log(1+k) stabilizes scale; Huber (5 =0.1)

« include small high-p tail to improve extrapolation; inference: milliseconds per graph. Early stop R {log k}




7. TRAINING PROTOCOL

* Stratified sampling over p(base + tails).
« Optimizer: Adam 1 x 1073 ,weight decay 1 x 107> .

* Best epoch selected by max Rlzogk :




8. RESULTS — IN-RANGE (MIXED p)

* Rj,g ~ 0.993

. RMSE,, ~ 0.028 -
* MAEk ~ 0.019 0.6 -
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9. RESULTS — EXTRAPOLATION

* Low-p (0.20-0.35): MAE, =~ 0.0076 ,RMSE, = 0.0137 )Rlzogkn/a due to near-zero variance).

* High-p (0.93-0.97): R}, ~ 0.727 ,RMSE, ~ 0.0240 ,MAE, ~ 0.0211.




10. ABLATIONS & INSIGHTS (BRIEF)

* log(1+k) target >linear k for stability.
* Graph-distance feature to the right boundary is important near percolation.

* Small high-p tail in training improves extrapolation.



11. RUNTIME & PRACTICAL NOTES

* Discrete Laplace solve: ms—s per graph (CPU), depends on component size.
* GCN inference: ms, easily batched.

* Implementation: PyTorch + SciPy (sparse).



12. RELATED WORK

* Yu, W. & Lyu, P. (2020). Unsupervised machine learning of phase transition in percolation,
Physica A: Statistical Mechanics and its Applications, 559, 125065.
https://doi.org/10.1016/j.physa.2020.125065
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https://doi.org/10.1016/j.physa.2020.125065
https://doi.org/10.1016/j.physa.2020.125065
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13. CONCLUSIONS

* A physics-consistent GNN surrogate for k.gon random porous layouts.
* High in-range accuracy; reasonable extrapolation to extremes of p.

* Simple architecture, fast inference, interpretable features.




14. FUTURE WORK

Weighted/anisotropic edges; richer geometry.
3D domains and irregular grids.
Joint k.¢gregression + percolation classification.

Active learning for tail regimes of p.




THANK YOU

Oleg Afanasiev
’ oleg.afanasiev@karazin.ua
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