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1.MOTIVATION

• Estimating effective permeability 𝑘eff is central to filtration, 

batteries, and composites. 

• Direct Darcy/Laplace solves are accurate but expensive at scale. 

• Goal: a fast, physics-consistent GNN surrogate for 𝑘eff .

3



2. PHYSICAL SETUP

• Domain: binary porous layouts 24 × 24. 

• Dirichlet BCs: 𝑃 = 1(left), 𝑃 = 0(right). 

• If no left–right connectivity ⇒ 𝑘eff = 0.

• Ground truth 𝑘eff :discrete Darcy/Laplace + flux.
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3. DATA GENERATION

• Bernoulli percolation (open cell with prob. 𝑝). 

• Training base: 𝑝 ∈ 0.40, 0.80 .

• Tails for robustness:[0.40, 0.40], [0.80, 0.90], [0.90, 0.97].

• Graph: nodes = open cells; edges = 4-neighborhood.
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4. GROUND-TRUTH PIPELINE

• Remove components not touching boundaries. 

• If L R disconnected ⇒ 𝑘eff = 0 .

• Solve discrete Laplacian for 𝑃. 

• Flux through right boundary ⇒ 𝑘eff (proper normalization).
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5. GRAPH FEATURES

• Degree; normalized degree. 

• Coordinates (x/W y/H).

• Global porosity; local porosity (5×5 average). 

• Distances to left/right boundaries (normalized).

• Normalized graph distance to right boundary.

• Readout: sum pooling.
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6. MODEL

• 2-layer GCN (sparse message passing) + MLP head. 

• Dropout: 0.15. 

• Target: for scale stability. 

• Loss: Huber (𝛿 = 0.1) 

• Early stopping by 𝑅log 𝑘
2 on validation. 
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7. TRAINING PROTOCOL

• Stratified sampling over 𝑝(base + tails). 

• Optimizer: Adam 1 × 10−3  weight decay 1 × 10−5 .

• Best epoch selected by max 𝑅log 𝑘
2  .
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8. RESULTS — IN-RANGE (MIXED 𝑝)

•  𝑅log 𝑘
2 ≈ 0.993 

• RMSE𝑘 ≈ 0.028 

• MAE𝑘 ≈ 0.019
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9. RESULTS — EXTRAPOLATION

• Low-𝑝 (0.20–0.35): MAE𝑘 ≈ 0.0076  RMSE𝑘 ≈ 0.0137  𝑅log 𝑘
2 n/a due to near-zero variance).

• High-𝑝 (0.93–0.97): 𝑅log 𝑘
2 ≈ 𝟎. 𝟕𝟐𝟕  RMSE𝑘 ≈ 0.0240  MAE𝑘 ≈ 0.0211.

12



10. ABLATIONS & INSIGHTS (BRIEF)

• log(1+k) target >linear 𝑘 for stability.

• Graph-distance feature to the right boundary is important near percolation.

• Small high-𝑝 tail in training improves extrapolation.
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11. RUNTIME & PRACTICAL NOTES

• Discrete Laplace solve: ms–s per graph (CPU), depends on component size. 

• GCN inference: ms, easily batched. 

• Implementation: PyTorch + SciPy (sparse).
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Physica A: Statistical Mechanics and its Applications, 559, 125065. 

https://doi.org/10.1016/j.physa.2020.125065
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13. CONCLUSIONS

• A physics-consistent GNN surrogate for 𝑘effon random porous layouts.

• High in-range accuracy; reasonable extrapolation to extremes of 𝑝.

• Simple architecture, fast inference, interpretable features.
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14. FUTURE WORK

• Weighted/anisotropic edges; richer geometry. 

• 3D domains and irregular grids. 

• Joint 𝑘effregression + percolation classification.

• Active learning for tail regimes of 𝑝.
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