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Graph neural networks for permeability estimation
in porous media
Oleg Afanasiev (Kharkiv, Ukraine)

Abstract. We demonstrate a working graph-mneural surrogate that
predicts the effective permeability k. of random porous structures with
physics-consistent targets. Binary Bernoulli percolation on 24x24 grids
is used to generate pore layouts. Open cells form nodes and undirected
4-neighborhoods form edges. The “true” kes is obtained by a discrete
Darcy/Laplace solve with Dirichlet boundary conditions (P=1 left, P=0
right); components not touching the boundaries are discarded; if there is
no left-right connectivity, keg=0.

A lightweight two-layer GCN with sparse message passing and sum pool-
ing is trained on z = log(1l+4kes) with a Huber loss (§=0.1) and early
stopping by R%ng. Node features comprise degree, normalized coordinates
(x/W,y/H), global porosity, local porosity (5x5 average), left/right dis-
tances, and normalized graph distance to the right boundary. Training is
stratified over porosity p: base interval [0.40,0.80] with additional slices
[0.30, 0.40], [0.80,0.90], and [0.90, 0.97].

Results. On a stratified test (N ~ 1k graphs), the model attains
R%ng%0.993, RMSE;~0.028, and MAE;~0.019. For low-p extrapolation
(0.20-0.35) the errors are small (MAE; ~ 0.0076, RMSE; ~ 0.0137; Rfogk
undefined due to near-zero variance). For high-p extrapolation (0.93-0.97)
we obtain Rlzogk%O.?Q?, RMSE; ~0.0240, and MAE;~0.0211.
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True log(1+k)
Regime R%ng RMSE, MAE,

In-range (mixed p) 0.993 0.028 0.019
Low-p (0.20-0.35) n/a  0.0137 0.0076
High-p (0.93-0.97) 0.727 0.0240 0.0211
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Conclusions. The GNN surrogate is accurate in-range and remains
informative at ultra—high porosities when a small high-p tail is included
during training.

Keywords: porous media; permeability; percolation; graph neural net-
works; physics-informed ML.

[1] W. Yuand P. Lyu, “Unsupervised machine learning of phase transition in percolation,”
Physica A: Statistical Mechanics and its Applications 559, 125065 (2020).
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On output stabilization of nonlinear systems
Maksym Bebiya (Kharkiv, Ukraine)

We consider the stabilization problem for a nonlinear system of the form

jjl =2+ fl(xl)a
Ty = u+ folz1, 22), (1)

Yy =y,

where v € R is a control input, y is the measurable output, fi(z1) and
fo(x1, x2) are continuous functions with f1(0) = 0, f5(0,0)=0.

Our objective is to achieve global asymptotic stabilization of system (1)
using the available information about its state. An output-feedback control
law is derived in the form

To implement this output-feedback control, we first design a full-state sta-
bilizing feedback law. Next, we construct a reduced-order observer [1] to
estimate the unmeasured component of the state vector. This estimate
is then used in place of the corresponding actual state to implement the
output-feedback control. The full-state feedback can be constructed re-
cursively [2] or nonrecursively [3]. The recursive technique is based on the
backstepping method that provides a systematic procedure for constructing
stabilizing control laws together with corresponding Lyapunov functions.
In contrast, nonrecursive approaches rely on direct Lyapunov technique,
which may yield simpler control laws but is generally less structured and
more problem-specific.

[1] Bernard, P.: Observer Design for Nonlinear Systems. Springer, Cham (2019).

2] Krsti¢, M., Kanellakopoulos, I. and Kokotovi¢, P.: Nonlinear and Adaptive Control
Design. Wiley, New York (1995).

[3] Bebiya, M. O. and Korobov, V. I.: On Stabilization Problem for Nonlinear Systems
with Power Principal Part. Journal of Mathematical Physics, Analysis, Geometry.
12, 113-133 (2016).
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The least-squares method in the theory of nonlinear
boundary value problems with delay

Peter Benner (Magdeburg, Germany)
Sergey Chuiko (Magdeburg, Germany; Sloviansk, Cherkasy, Ukraine)
Viktor Chuiko (Kyiv, Ukraine)

The present work addresses the issue of solution existence
2(t,e): z(-,e) € C0,T), 2(t,-) € C[0, &
for nonlinear periodic boundary value problem with delay [1]
dz(t,e)/dt = A(t)z(t,e) + B(t)z(t — A,e) + f(t)+ (1)
+e Z(z(t,e), 2(t — A e), t,¢€)

in a small neighborhood of the solution 2(t) € C'[0,T] of the generating
problem

dzo(t)/dt = A(t)zo(t) + B(t)zo(t — A) + f(t), A €RL (2)

Here A(t), B(t) are (n x n)-dimensional matrices, Z(z(t,¢), z(t — A, €),t,¢)
is a nonlinear vector function, T-periodic to the independent variable t,
analytic with respect to the unknown z(t,e) and z(t — A,¢) in a small
neighborhood of the solution of the generating problem (2) and continuous
with respect to the small parameter £ on the segment [0, go]. In addition,
the function f(t) is continuous with respect to the ¢ € [0, 7.

The relevance of the study of the boundary value problem (1) is related
to the wide application of similar problems in the study of non-isothermal
chemical reactions [2]. As is known, in the critical case, namely, in the
presence of 7" — periodic solutions 2y(t, ¢;) = X, (t)c,, ¢, € R” of the homo-
geneous part

dzo(t) dt = A(t) 20(t) + B(t)z(t — A) 3)
of the system (2), and in the case of constant matrices A(t) = A and B(t) =
B, in the presence of purely imaginary roots of the characteristic equation
the generating periodic problem for the equation (2) is not solvable for all
vector functions f(¢). In the critical case, the adjoint system [3]

dy(t)/dt = —A"()y(t) — B (t)y(t + A)

has a family of 7" — periodic solutions of the form y(t, ¢,) = H,.(t)c,, ¢, € R".
The periodic problem for equation (2) is solvable under the condition [3]

/0 HY(s) f(s) ds = 0. (4)
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Here, H,(t) is an (n X r) — dimensional matrix formed from r linearly
independent T' — periodic solutions of the adjoint system. Let us assume
that condition (4) is satisfied; in this case, the general solution of the
generating 7' — periodic problem for the equation (2) takes the form

20(t,¢r) = Xoo(t) o + G[f(5)](t), ¢ €R,

where G[f(s)](t) is a particular solution of the generating 7' — periodic
problem for the equation (2) with delay, X,.(f) is an (n X r) — dimensional
matrix formed by r linearly independent T' — periodic solutions of the
system (2). As is known [1, 3], if, for the generating periodic problem for
the equation (2), a critical case occurs, and the T' — periodic problem for
the equation (1) has a T' — periodic solution that, at ¢ = 0, transforms into
the generating solution z(¢,0) = zy(¢, ¢}), then the vector ¢& € R" satisfies
the equation for generating amplitudes

F(c) = /0 H(s)Z(20(s,¢)), z0(s — A, cr),8,0)ds = 0. (5)

By applying the Adomian decomposition method and the least squares
method scheme, we have derived the necessary and sufficient conditions for
the existence of solutions to the weakly nonlinear periodic boundary value
problem for a system of differential equations with concentrated delay in
the critical case. The efficiency of the iterative schemes we have developed
is demonstrated using an example of solving the problem of approximating
periodic solutions to an equation with concentrated delay, which models a
non-isothermal chemical reaction [2].

[1] Boichuk, A.A., Samoilenko, A.M.: Generalized inverse operators and Fredholm
boundary-value problems. VSP, Utrecht, Boston (2004).

[2] Benner P., Chuiko S., Zuyev A. A periodic boundary value problem with switchings
under nonlinear perturbations. Boundary Value Problems. 50, 1-12 (2023).

[3] Chuiko S.M., Chuiko, A.S. On the approximate solution of periodic boundary value
problems with delay by the least-squares method in the critical case. Nonlinear Os-
cillations. 14, 445-460 (2012).
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Weakly nonlinear periodic boundary value problems
with switchings

Peter Benner (Magdeburg, Germany)
Sergey Chuiko (Magdeburg, Germany; Sloviansk, Cherkasy, Ukraine)
Olga Nesmelova (Sloviansk, Cherkasy, Ukraine)

We study the problem of constructing solutions [1, 2]
2(-,e) € CH[0,T]\ {7(e)}s} NC[0, 7],  2(t,-) € C[0, &)
of the autonomous boundary value problem for the equation
2 (t,e) = Az(t,e) +eZ(z(t,e),¢e), Lz(-,e) =0, (1)
which continuous at t = 7(¢). At the point ¢t = 7(¢) :
0<7(e)<T, 7(0):=m

the solution of the boundary value problem (1) might have a limited dis-
continuity of first derivative [1, 2]. The solution of the boundary value
problem (1) is found in a small neighbourhood of the solution

2t) € {071\ (s} nCO.T]
of the generating boundary value problem

() = Azo(t), Lz(-) =0, 2)

At the point ¢ = 7y the solution of the boundary value problem (2) might
have a limited discontinuity of the derivative. Where, A € R"*" is a
constant matrix, Z(z,¢) is a nonlinear vector function, piecewise analytic
in the unknown z in a small neighbourhood of the solution of the generating
problem (2) and piecewise analytic in a small parameter € on the interval
0, 0]. In addition,

o) 2(0,€) = (T ¢) S
s <4ﬂa+n£»—4ﬂ@—0ﬁ>> :

L20() 1= < Zo( 20(0) — 20(7) | ) _0

7'0-'—0) —2’0(7'0—0

are linear bounded vector functionals.

and
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The autonomous boundary value problem for the system (1) with
switchings at non-fixed pionts in time on a fixed length interval is sig-
nificantly different from similar boundary value problems with switchings
at fixed points in times [3].

We are found the constructive conditions of solvability and the scheme
for constructing solutions of the nonlinear periodic boundary value problem
with switchings at non-fixed points in time.

Using the Adomian decomposition method [4, 5, 6], the solvability con-
ditions are obtained and a new iterative technique for finding solutions
to the weakly nonlinear periodic boundary value problem with switchings
at non-fixed points in time is constructed. In addition, we obtained the
constructive conditions for the convergence of the iterative scheme to the
solution of the weakly nonlinear boundary value problem, as well as the
switchings pionts. The obtained iterative scheme is applied to find ap-
proximations to the periodic solution of the equation with switchings at
non-fixed points in time, which models a nonisothermal chemical reaction
3, 6].

This work was partially supported by the grant from the Simons Founda-
tion (SFI-PD-Ukraine-00017674, Olga Nesmelova ) and by the Grant of the
National Academy of Sciences of Ukraine to research laboratories/groups
of young scientists of the NAS of Ukraine for research in the priority areas
of science and technology development in 2024-2025, s/n 0124U002111.

[1] Boichuk, A.A., Samoilenko, A.M.: Generalized inverse operators and Fredholm
boundary-value problems. VSP, Utrecht, Boston (2004).

[2] Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations, World Scien-
tific Series on Nonlinear Science, Ser.A. World Scientific Publishing Co., Singapore
(1995).

[3] Benner, P., Chuiko, S., Zuyev, A.: A periodic boundary value problem with switch-
ings under nonlinear perturbations. Boundary Value Problems. 50, 1-12 (2023).

[4] Adomian, G.: A review of the decomposition method in applied mathematics. Journ.
of Math. Math. Anal. and Appl. 135, 501-544 (1988).

[5] Chuiko, S.M., Chuiko, O.S., Popov, M.V. Adomian decomposition method in the
theory of nonlinear boundary-value problems. Journal of Mathematical Sciences. 277,
338-351 (2023).

[6] Benner, P., Chuiko, S., Nesmelova, O. Autonomous periodic boundary-value problem
with switchings at nonfixed points of time. Nonlinear Oscillations. 27, 469-493 (2024).
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The controllability function for MIMO control
systems via matrix distributions
Abdon Choque-Rivero (Morelia, Mexico)

We introduce a formulation of Korobov’s controllability function for
multiple-input multiple-output (MIMO) linear control systems in terms of
matrix distributions.

Let A and B be constant real matrices of dimensions n x n and n x r,
respectively. For a completely controllable linear MIMO state equation

T = Ax + Bu, reR", ueQCR,

we construct a family of bounded positional controls u = u(z, ©(z)) that
solve the synthesis problem for the system. We employ the controllability
function ©(x) [1, 2], defined as the positive solution of the implicit equation

2000 = (N_l(@):z:, x), ag > 0,

where -
N(©) = / Oc ' Bdo (k) B'e ",
0
with positive parameter ©. Here, o(s) is a positive matrix distribution,
that is, an r X r nondecreasing matrix-valued function of bounded variation

on [0,00) [3, 4].

[1] Korobov, V.I.: A general approach to the solution of the problem of synthesizing
bounded controls in a control problem. Mat. Sb. 109(151): pp. 582-606, 1979, (Rus-
sian). English transl.: Mat. Sh. 37(4), 535-557 (1980).

[2] Korobov, V.I. and Sklyar G.M.: Methods for constructing of positional controls and
an admissible maximum principle. Differ. Uravn., 26(11), 1914-1924 (1990).

[3] Choque Rivero, A.E.: On Dyukarev’s resolvent matrix for a truncated Stieltjes matrix
moment problem under the view of orthogonal matrix polynomials, Linear Algebra
Appl. 474, 44-109 (2015).

[4] Choque Rivero, A.E. On matrix Hurwitz type polynomials and their interrelations
to Stieltjes positive definite sequences and orthogonal matrix polynomials, Linear
Algebra Appl. 476 56-84 (2015).
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Adomian decomposition method for the nonlinear
periodic boundary-value problems

Sergey Chuiko (Magdeburg, Germany; Sloviansk, Cherkasy, Ukraine)
Nikita Popov (Sloviansk, Cherkasy, Ukraine)

We study the problem of constructing of an analytic solutions
z(t) € CH0,T]
of the nonlinear periodic boundary-value problem [1, 2]
dz/dt = Az + f(t) + Z(2,t), (z(-):=2(0)—2(T) =0 (1)
in a small neighborhood of the analytic solution of the generating problem
dzo/dt = Azy, Lz(+) := 20(0) — zo(T") = 0. (2)

where, A is a constant (n x n)-dimensional matrix, Z(z,t) is a nonlinear
vector function analytic in the unknown z in a small neighborhood of the
solution of the generating problem (2). In addition, the vector function
Z(z,t) and the function f(¢) are continuous in the independent variable ¢
on the segment [0, T]. In the critical case

det@ =0, Q:=0X(")
and the generating problem (2) under the condition [1]
Po.tK[F(s)]() = 0. 3)
has an r parameter family of solutions
20(t o) = Xo(t) o + Gf(9)](F), & € R

Where, X (t) is a normal (X (0) = [,,) fundamental matrix of the homoge-
neous part of the differential system (2) and the matrix X, (¢) consists of
r linearly independent columns of the normal fundamental matrix X (¢).
The matrix Pp: is formed by r linearly independent rows of the matrix
orthoprojector

Py : R" = N(Q").

Furthermore,

Glg(s)(t) = K[g(s)](t) = X ()@ LK ]g(s)]()

is the generalized Green operator of the periodic boundary-value problem

Y= Ayt olt), y(0) ~y(T) =0
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in the critical case and Q" is the pseudoinverse Moore—Penrose matrix.
We also consider the Green operator [1, 3]

Klg(s)(t) := X(t)/ X7Y(s)g(s)ds, te€al]
of the Cauchy problem

dy/dt = Ay +g(t), y(a)=0.

Where, ¢(t) € Cla,b] is a continuous vector function. It is known that
the critical case occurs if and only if the matrix A has eigenvalues on the
imaginary axis.

For the nonlinear periodic boundary-value problem posed for an ordi-
nary differential equation (2) in the critical and noncritical cases, we obtain
constructive conditions of its solvability and propose a scheme for finding
its solutions by using the Adomian decomposition method [4, 5, 6]. To
illustrate the efficiency of the proved theorem, we consider the problem of
determination of analytic solutions of the nonlinear Duffing equation with
perturbation.

[1] Boichuk, A.A., Samoilenko, A.M.: Generalized inverse operators and Fredholm
boundary-value problems. VSP, Utrecht, Boston (2004).

[2] Boichuk A.A.: Nonlinear boundary-value problems for systems of ordinary differen-
tial equations. Ukrainian Mathematical Journal. 50, 186-195 (1998).

[3] Boichuk, O., Chuiko, S., Popov, M. Adomian decomposition method in the theory
of nonlinear boundary-value problems. Ukrainian Mathematical Journal. 76, 1-14
(2024).

[4] Adomian, G.: A review of the decomposition method in applied mathematics. Journ.
of Math. Math. Anal. and Appl. 135, 501-544 (1988).

[5] Chuiko, S.M., Chuiko, O.S., Popov, M.V. Adomian decomposition method in the
theory of nonlinear boundary-value problems. Journal of Mathematical Sciences. 277,
338-351 (2023).

[6] Boichuk, O., Chuiko, S., Chuiko, V. Adomian decomposition method in the theory
of problems inverse to nonlinear boundary-value problems with delay. Journal of
Mathematical Sciences. 291, 917-930 (2025).
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Parabolic De Giorgi classes with doubly nonlinear,
nonstandard growth

Simone Ciani (Bologna, Italy)
Eurica Henriques (Braga, Portugal)
Mariia Savchenko (Sloviansk, Ukraine)
Igor Skrypnik (Sloviansk, Ukraine)

We define a suitable class PDG of functions bearing unbalanced energy
estimates, that are embodied by local weak subsolutions to doubly non-
linear, double-phase, Orlicz-type and fully anisotropic operators. Yet we
prove that members of PDG are locally bounded, under critical, sub-critical
and limit growth conditions typical of singular and degenerate parabolic
operators, with quantitative point-wise estimates that follow the lines of
the pioneering work of Ladyzhenskaya, Solonnikov and Uraltseva [1]. These
local bounds are new in the critical and sub-critical cases, and have been
obtained without a qualitative boundedness assumption. In particular,
the proof of local boundedness in the critical case covers both the classical
p-Laplacian and the porous medium equations.

[1] Ladyzenskaya, O.A., Solonnikov, N.A. and Ural’tzeva, N.N.: Linear and Quasilinear
Equations of Parabolic Type. Translations of Mathematical Monographs, 23, Amer-
ican Mathematical Society, Providence, RI, (1967).

[2] Ciani, S., Henriques, E., Savchenko, M.O., Skrypnik, I.I.: Parabolic De Giorgi classes
with doubly nonlinear, nonstandard growth: local boundedness under exact integra-
bility assumptions, (under review).
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On approximate controllability problems for the heat
equation in a half-plane controlled by the Dirichlet
boundary condition with a bounded control
Larissa Fardigola (Kharkiv, Ukraine)

Kateryna Khalina (Kharkiv, Ukraine)

We consider the control system

wy = Aw, rr€R,, xR, t€(0,7), (1)
w(ov(')m?t) - ()2 ) Ty €ER, t € (OaT)a (2>
w((-)m, (-)[Q], O) = wO r1 € Ry, 29 €R, (3)

where R, = (0,400), T > 0, A = (98/0x1)* + (0/0x2)*, v € U[0,T] is a
control,

Ul0,7] = {gp e L¥(R x (0,T))

sup [io(-1)] € LQ(R)}

te[0,77]

is the set of admissible controls. The subscripts [1] and [2] associate with
the variable numbers, e.g. (-)i) and (+)jy correspond to x; and xg, respec-
tively, if we consider f(z), z € R?. This problem is considered in spaces of
the Sobolev type.

Controllability problems for the heat equation were studied both in
bounded and unbounded domains. However, most of the papers studying
these problems deal with domains bounded with respect to the spatial
variables.

For a bounded domain  C R" with the boundary 99 of class C?
(which is considered instead of the domain R x R), it is well-known that
the control system of the form (1)—(3) is null-controllable for a given time
T > 0. This result was obtained by using Carleman inequalities (see, e.g.
1]).

For unbounded domains, the situation is essentially different. There
exist pairs of initial and target states where the initial state can be driven
to the end state by means of control system (1)—(3), and there exist those
where the initial state cannot be driven to the end state by means of this
system. For instance, there is no initial data in any negative Sobolev space
that may be driven to zero in finite time (see [2]).

We study the approximate controllability problem for system (1)—(3) in
Sobolev spaces under controls from U[0, T, in particular, w" € L?*(R, X R)
and w(-,t) € L*(R; x R), ¢t € [0,T]. We show that L*(R x (0,7'))-controls
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are not appropriate to consider approximate controllability property for
w’ € L*(Ry x R) and w(-,t) € L>(R; x R), t € [0, T], because there exists
a control u € L*(R x (0,T)) (with compact supports) for which the end
state w(-,T) of the solution to (1)—(3) does not belong to L*(R; x R) for
the initial state w® = 0 € L?(R, xR). This is why we consider the narrower
set of controls U[0, T, which provides the condition w(-,t) € L*(R, x R),
t € [0,7T], for any w® € L?*(R, x R). Roughly speaking, we consider
a specific subset of bounded controls in L*(R x (0,7)). We prove that
each initial state w® € L*(R, x R) of system (1)—(3) can be driven to an
arbitrary neighbourhood of any target state w! € L?(R, x R) by choosing
an appropriate control u € U0, T, in other words, a state w’ € L*(R, xR)
is approximately controllable to a target state w! € L*(R, x R) in a given
time 7T'. The method of proving this assertion is constructive. This allows
to provide a numerical algorithm of solving the approximate controllability
problem for system (1)—(3). To this aid, we consider the odd extension of
w and w” with respect to x; and obtain a new control problem. Then we
develop the state and the control in this new control system in the Fourier
series with respect to a basis generated by Hermite functions that allows us
to reduce the 2-d problem to a finite family of the 1-d ones. To construct
controls solving them, we apply the method introduced in [3] for solving the
approximate controllability problem for the 1-d heat equation controlled by
the Dirichlet boundary condition. Finally, we apply the Fourier transform
and its inverse to analyse the solution to control problem. The results is
published in [4].

[1] Lebeau, G. and Robbiano, L.: Controle exact de I’équation de la chaleur. Comm.
Partial Differential Equations 20, 335-356 (1995).

[2] Micu, S. and Zuazua, E.: On the lack of null controllability of the heat equation on
the half-space. Port. Math. (N.S.) 58, 1-24 (2001).

[3] Fardigola, L. and Khalina, K.: Reachability and controllability problems for the heat
equation on a half-axis. J. Math. Phys. Anal. Geom. 15, 57-78 (2019).

[4] Fardigola, L. and Khalina, K.: Approximate controllability problems for the heat
equation in a half-plane controlled by the Dirichlet boundary condition with a
bounded control. J. Math. Phys. Anal. Geom. (accepted); available from: https:
//arxiv.org/abs/2506.10466
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Optimal exact observability of vibrating systems

Mateusz Firkowski (Szczecin, Poland)
Jarostaw Wozniak (Szczecin, Poland)

We consider a general class of dynamical systems with observation of

the form _
{ZAZ

Y =CZ, (1)

where A : D(A) C H — H is the infinitesimal generator of a Cy-semigroup
T(t), C : H — C is a linear (unbounded) observation operator, H is a
Hilbert space.

Under some assumptions on asymptotic spectral analysis of the differ-
ential operator of the system, we can prove that considered system is not
exactly observable in the default topologies setting. Then, we show that
system (1) becomes exactly observable after introducing stronger topology
for state observation.

The main result of the talk is devoted to find optimal topology of the
observable space. Obtained results can be applied to Timoshenko beam
systems.

[1] Sklyar, G. M., Wozniak, J., Firkowski, M.: Exact observability conditions for Hilbert
space dynamical systems connected with Riesz basis of divided differences. Syst.
Control Lett. 145 (2020), 104782.

[2] Wozniak, J., Firkowski, M.: Sobolev’s type optimal topology in the problem of ex-
act observability for Hilbert space dynamical systems connected with Riesz basis of
divided differences, J. Math. Phys. Anal. Geom. (to appear).
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Polynomial and copolynomial solutions of infinite
order linear partial differential equations

Sergiy Gefter (Kharkiv, Ukraine )
Aleksey Piven’ (Kharkiv, Ukraine)

Let K be an arbitrary commutative integral domain with identity of
characteristic 0, K[z, ..., ;] is the ring of polynomials with coefficients in
K and K|z, ..., z,]" is the module of K-linear mappings from K[xy, ..., x,]
to K. By a copolynomial over the ring K we mean an element of the
module Klzy,...,z,) [1]. U T € Klz1,..,x,] and p € K[zy,...,x,], then

for the value of 7" on p we use the notation (7, p). For any multi-index
n

a = (oq,...,ap) € N the derivative DT = Mlafjc‘i'f_axan (ol = > o)
1 2 n le
of a copolynomial T is defined in the same way as in the classical theory

of generalized functions: (D*T,p) = (—1)°l(T, D), p € Klxy,..., ).

For © = (z1,...,x,) we denote z% = x"x5?---2%. In the ring K, we
consider the discrete topology. Further, in the module of copolynomials
Klxy,...,x,], we consider the topology of pointwise convergence. This

topology is generated by the following metric:

d(Ty,T3) = Z dO((T17x:|)oz|(T2’xa)>a

|a|=0

where dj is the discrete metric on K. The convergence of a sequence

{T}2, to T in K[zy,...,x,)" means that for every polynomial p €
K[xy,...,x,] there exists a number ky € N such that
(Tk,p):(T,p), k:ko,kfo+1,]€0+2,....
Let F = > a,D® be a differential operator of infinite order on

|a|=0
Klxy,...,x,] or K[xq, ..., x,]" with coefficients a, € K.
We have obtained the following main results.

Theorem 1. Assume that p € K[y, ..., 2], ag is an invertible element of
(0.@]

K and the formal power series Y c,s8% is inverse for the formal power
=0
. |
series Y. ans“ in the ring K|[s1,...,s,]]. Then the polynomial u(x) =
|or|=0

> caDp(z), where m = degp, is the unique polynomial solution of the
|ae|=0
equation Fu = p. Moreover, degu = degp.
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Theorem 2. The homogeneous equation Fu = 0 has only trivial solution
in K|z, ...,x,] if and only if ag # 0.

Theorem 3. Let K be a field of characteristic 0 and let F # 0. Then the
equation Fu = p has a polynomial solution for any p € Klzq, ..., x,).

Theorem 4. Let K be an integral domain of characteristic 0. Assume that
F # 0. Then the homogeneous equation Fu = 0 in the module K[z, ..., x|’
has only trivial solution.

Theorem 5. Let K be a field of characteristic 0. Then ImF is a closed
subspace in Klxy, ..., x,].

Theorem 6. Let K be a field of characteristic 0, T € K|xy,...,z,)" and let

Fr= S (=Da,D* : Klzy,...,x,] = Klx1,...,x,]. Then the equation
|ae|=0

Fu =T has a solution if and only if (T,p) = 0 for any p € K|z, ..., x,]

such that F*p =0

The proofs of Theorems 3, 5 and 6 are based on the using of the theory
of locally convex spaces over non-Archimedean valued fields [2].

[1] Gefter S.L., Piven’ A.L.: Partial differential equations in module of copolynomials
over a commutative ring, J. Math. Phys. Anal. Geom. 21, 56-83 (2025).

[2] Perez-Garcia C., Schikhof W. H.: Locally Convex Spaces over Non-Archimedean
Valued Fields. Cambridge University Press, Cambridge (2010).
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Generalised periodic solutions of implicit linear
difference equations

Anna Goncharuk (Kharkiv, Ukraine)
Sergiy Gefter (Kharkiv, Ukraine)

We consider the linear difference equation of mth order with constant
coefficients

A Wit + G 1Whpam—1 + -« + G Wpi1 + aowy = fu, am # 0, n € Ny, (1)

where the coefficients ag,aq,...,a,, and all elements of the sequence
{fn}>2, belong to the commutative ring R. This equation is implicit, since
a, could be non-invertible. We are looking for a sequence {w,}>°, € RN
that satisfies this equation.

Definition 1. The sequence {f,}°° is called generalised periodic if for
some by, bs, ... by from the ring R it satisfies the recurrence relation

bofu +b1fn1 + .-+ b fusr =0, n € Nj.

Theorem 1. Suppose that the sequence { f,}°°, is generalised periodic for
some by, by, ...,br. Let the homogeneous equation

A Whnam + Cm-1Wpam-1 + ... + aGwp1 + agw, =0, a,, #0, n € Ny

has only a trivial solution in RY. Then the solution {w,}>2, of the

equation (1), if it exists, must also be generalised periodic for the same
by, b1, ..., b.

This theorem allows us to find the solutions in explicit form for a wide
class of such difference equations over the ring of polynomials and the ring
of integers.

Using this result and some previous results on equations of the type (1)
(see [1]) one can also obtain sum of a convergent series » >~ p"f, in the
ring of p-adic integers Z,, where f,, satisfies an explicit reccurence relation.

[1] Goncharuk A.B.: Implicit linear difference equations over a non-Archimedean ring,
Visnyk of V.N.Karazin Kharkiv National University Ser. “Mathematics, Applied
Mathematics and Mechanics”, Vol. 93, p. 18-33 (2021)
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Solvability of first-order implicit linear difference
equations over one finite commutative ring of order p?
Mykola Heneralov (Kharkiv, Ukraine)

Let us denote Z,, the residue class ring modulo m, and let p be a prime
number. Consider the following ring of order p*: S, = Z,[t]/(t*). Let A =
A()-l—Alt, B = By+ Bt 7é 0, F, = F()ﬁ-l—FLnt € Sp (n el = {0, 1,2,.. })
be given elements of the ring S,, where Ay, Ay, By, B1, Fon, Fin (n € Zy)
are the elements of the ring Z,. In the ring S, consider the following
first-order linear difference equation:

BXpy = AX, + F,, neZ,. (1)

Equation (1) is called implicit, if B is a non-invertible element of the ring
Sp. The following theorem establishes a solvability criterion for the equa-
tion (1).

Theorem 1. The following assertions hold.

1. The equation (1) has finitely many solutions if and only if either Ay #
0, or By # 0. Moreover, the amount of solutions of the equation (1) is

1, Ay#0,By=0
; 07 0,580 =0, and the general solution of this
p°, Bo#0

equation has the form

equal to N =

n—1
D% B_nAnXO + Z B_S_lASFn_S_l, By ;é 0,
n — s=0

_A_an - BA_2FTH-17 BO = 07 AO 7& 07
where Xg s an arbitrary element of S, if By # 0.

2. The equation (1) has infinitely many solutions if and only if Ay =
By =0 and Fy,, = 0 for all n € Z;. Moreover, the general solution
of this equation has the form X, = Xo, + Xint (n € Z), where
{Xin} 2, is an arbitrary sequence at Z, and the sequence {Xo,}
15 defined as follows:

n—1

Xon=B"AlXog+ Y By 'AiF o0, neN,
s=0

where Xo s an arbitrary element of Z,.
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3. The equation (1) has no solutions if and only if Ay = By = 0 and
Fon #0 for somen € Z,.
For the equation (1) consider the initial condition

Xo = Yo, (2)

where Yy = Yy + Yiot € S, and Yj,Y10 € Z,. The following theorem
establishes a solvability criterion for the initial problem (1), (2).

Theorem 2. The following assertions hold.
1. The initial problem (1), (2) has a unique solution if and only if one

of the following conditions holds:

(a) By # 0.
(b) By =0, Ay 7é 0 and Yy = —AilFo — AizBFl.

Moreover, the unique solution of the initial problem (1), (2) has the

form

n—1
 _JBTAY+ Y B, By £0,
n — s=0
—A_an — BA_QFn_H, By =0, A 7& 0.

2. The initial problem (1), (2) has infinitely many solutions if and only
if Ao = By = 0 and Fy,, = 0 for alln € Z,. Moreover, the general
solution of this initial problem is defined as X, = Xo, + Xint (n €
Z.), where X1 = Y10, {X1,} -, is an arbitrary sequence at Z, and

{Xon} — is defined as follows:

n—1

Xoo =Yoo, Xon =B "AYo0+ Y B 'AjF 1, neN.
5=0
3. The initial problem (1), (2) has no solutions if and only if By = 0 and
one of the following conditions holds:

(a) Ag =0 and Fy,, # 0 for somen € Z..
(b) Ay # 0 and Y # —A_IFO — BA_2F1.

[1] Heneralov, M. V.: Implicit linear difference equations over finite commutative rings
of order p? with identity. Visnyk of V. N. Karazin Kharkiv National University. Ser.

Mathematics, Applied Mathematics and Mechanics. 101, 21-30 (2025).
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An approximate solution of the Boltzmann equation
Oleksii Hukalov (Kharkiv, Ukraine)

The Boltzmann equation for the model of hard spheres has the form [1]

D(f) =Q(f. f); (1)
o =2+ (5. 2)

Qf, f) ——/Rgdm/‘v—vb
-[f(vl,t,a:)f(v 1, x) —f(v,t,x)f(vl,t,x)}doz. (3)

We construct an approximate solution in the form

f(v,t,x) ngzt:c (v, t,2), (4)

where M;(v,t, x) are the exact solutions of the equation (1)
D(M;) = Q(M;, M;) = 0.

The coefficient functions ¢;(¢, x) are non-negative functions, smooth on R*

and
) 20,

As Maxwellians M;(v,t,x) in (4), we choose the expression that describes
the motion of a gas of the ”acceleration-compression” type

5\ .
Mi(v,t,a:) = p; <_Z> o Bilv=1i)" (5>
m

We use the uniform-integral error

8901' t,x
ot ol = s (lte )]+ | 2250
(t,z)eR*

(‘3%(75, x)
* ‘ Oz

A= sw [ o) Q| (6
(t,z)eR*

In the paper [2], we establish sufficient conditions for the coefficient func-

tions ;(t,x) and hydrodynamic parameters appearing in the distribu-

tion (4) and allowing us to make the analyzed deviation (6) arbitrarily

small.
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[1] Cercignani, C.: The Boltzman Equation and its Applications. Springer, New York
(1988).

[2] Hukalov, O., and Gordevskyy V.: New Explicit Approximate Solution of the Boltz-
mann Equation in the Case of the Hard Sphere Model. Ukrains’kyi Matematychnyi
Zhurnal, 77(8), 503-520 (2025).(in Ukrainian)
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Approximate solution of the time-optimal problem
for non-autonomous linearizable control systems

Svetlana Ignatovich (Kharkiv, Ukraine)
Kateryna Sklyar (Szczecin, Poland)
Grigory Sklyar (Szczecin, Poland)

In the talk, we discuss one approach to solving the time-optimal problem
for nonlinear non-autonomous linearizable systems.

First results concerning linearizability conditions for nonlinear control
systems were obtained in 1973 [1, 2|, and later they were generalized in
various directions. In particular, the case of minimal requirements for
smoothness of systems was considered in [3], and the generalization of
the approach to non-autonomous systems was proposed in [4] and then
developed in [5, 6].

An obvious advantage of linearizable systems is that we can solve con-
trol problems for such systems using well-known methods from the lin-
ear control theory. More specifically, if a nonlinear system is linearizable,
then there exists a change of variables that maps the system to a lin-
ear one. Precise definition depends on the class of considered systems
(autonomous/non-autonomous systems, requirements for smoothness of
systems and changes of variables, etc.) or on the domains where the sys-
tems are considered (fixed set or neighborhood). In any case, if we know
this mapping, we can move to a linear system, solve the corresponding
problem for it, and then return to the original system. However, in gen-
eral, determining a linearizing mapping is a complex problem that typically
cannot be solved explicitly. In particular, to find this mapping, one must
solve a system of PDE of the first order.

Thus, it is interesting to develop approaches that allow finding a linear
system without knowing the linearizing mapping; at least, without knowing
this mapping in its analytical form.

In the talk, we consider the time-optimal problem for nonlinear non-
autonomous systems with one-dimensional control of the form

T =a(t,z) +b(t,x)u, a(t,0)=0,
z(0) = 2% x(0) =0, |u(t)| <1, § — min,
for 2 from a neighborhood of the origin, and show how to combine
two results: (i) the method of successive approximations for linear non-

autonomous systems [7, 8] based on solving the Markov power moment
min-problem (with gaps), which can be analytically solved in many cases
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9, 10, 11], and (ii) the theorem on linearizability for non-autonomous non-
linear control systems, which can be efficiently applied [5, 6]. The proposed
method does not require finding the linearizing mapping, namely, does not
require solving the system of partial differential equations. Examples show
the applicability of the method.

1]

[10]

[11]

[12]

Korobov V. I. Controllability, stability of some nonlinear systems, Differ. Eq. 9 (1973)
614-619.

Krener A. On the equivalence of control systems and the linearization of non-linear
systems, SIAM J. Control 11 (1973) 670-676.

Sklyar G. M., Sklyar K. V., Ignatovich S. Yu. On the extension of the Korobov’s
class of linearizable triangular systems by nonlinear control systems of the class C*.
Systems Control Lett. 54 (2005) 1097-1108.

Sklyar K. On mappability of control systems to linear systems with analytic matrices,
Systems Control Lett. 134 (2019) 104572.

Sklyar K., Ignatovich S. On linearizability conditions for non-autonomous control
systems. Advances in Intelligent Systems and Computing 196 (2020) AISC, 625-637.

Sklyar K., Ignatovich S. Invariants of linear control systems with analytic matrices
and the linearizability problem. J. Dynamical and Control Systems 29 (2023) 111-
128.

Korobov V. 1., Sklyar G. M. The Markov moment min-problem and time optimality,
Sib. Math. J. 32(1991) 46-55.

Sklyar G. M., Ignatovich S. Yu. A classification of linear time-optimal control prob-
lems in a neighborhood of the origin. J. Math. Anal. Appl. 203 (1996) 791-811.

Korobov V. I., Sklyar G. M. Time optimality and the power moment problem, Math.
USSR-Sbh. 62 (1989) 185-206.

Korobov V. I., Sklyar G. M. Markov power min-moment problem with periodic gaps.
J. of Mathematical Sciences 80 (1996) 1559-1581.

Korobov V. 1., Bugaevskaya A. N. The solution of one time-optimal problem on the
basis of the Markov moment min-problem with even gaps. Mathematical Physics,
Analysis, Geometry 10 (2003), 505-523.

Sklyar K. V., Ignatovich S. Yu. Solving the time-optimal control problem for nonlin-
ear non-autonomous linearizable systems,
https://doi.org/10.48550/arXiv.2203.08766.
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Optimization of treatment strategy in the
mathematical model of liver regeneration
Valeriia Karieva (Kharkiv, Ukraine)

This work presents a mathematical model of liver regeneration aimed at
identifying optimal therapeutic strategies using the principles of optimal
control theory. The liver’s regenerative process is represented as a multi-
component dynamic system where various types of hepatocytes interact
under the influence of internal and external factors. The system dynamics
are modeled via modified Lotka—Volterra-type differential equations, and
the optimization is performed using the method of adaptive dynamic pro-
gramming (ADP). The main objective is to minimize treatment cost while
achieving efficient liver recovery.

The regenerative process of the liver is modeled by the interaction of
multiple hepatocyte populations: normal hepatocytes, binuclear hepato-
cytes, polyploid hepatocytes, hypertrophied hepatocytes, apoptotic cells,
necrotic cells.

Let the generalized equations describing the dynamics of different liver
cell populations be written in the following compact form [1]:

i1 = flx,m,N), 0<N<1, 29=2" =z e€X ;NeU;teN,
(1)
where x; represents the state vector of various functional liver cell types
at discrete time ¢; X C R” is the state space; 2 € X is the initial cell
distribution; ); is the vector of control parameters, which regulate processes
such as mitosis, polyploidization, apoptosis, and stress response, U C R™
is the control space; 7; is a predefined function representing the external
influence, including both toxic effects and therapeutic interventions.

The system is modeled as an autonomous, controlled, deterministic dy-
namical system S(X, U, f), evolving in discrete time ¢, with the transition
function f(xy, 74, \¢) explicitly defined for the liver regeneration model [1].

The goal is to find a control sequence \;l_,, that minimizes the cumula-
tive cost of the regeneration process over a finite time horizon. The optimal
control strategy minimizes the following cost functional:

J(\) = Z (Z wlx?(t) + P)\t|2> 3 (2)

t=0 1=1

where w; > 0 are weighting coefficients representing the cost or risk as-
sociated with deviations in specific liver cell populations, p > 0 is a reg-
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ularization coefficient penalizing excessive intervention effort (treatment
intensity).

To solve this discrete-time optimal control problem, we use the principle
of optimality from dynamic programming. The Bellman value function
V (z) satisfies the recurrence [2]:

Vi(ay) = min (L(ze, M) + V([ (@, 78, M) (3)
where L(xy, N) = Y0 wizZ(t) + p|Ai]? is the immediate cost, f(x, i, M)
is the state transition function for system S as defined in (1).

Since the explicit solution to the Bellman equation is computationally
infeasible in high-dimensional settings, we apply the Adaptive Dynamic
Programming (ADP) approach. ADP uses function approximation (e.g.,
neural networks or basis functions) to estimate the value function V()
and updates the control policy via reinforcement learning principles [3].

[1] Karieva V.V., Lvov S.V.: Mathematical model of liver regeneration processes: ho-
mogeneous approximation. Visnyk of V.N.Karazin Kharkiv National University.
Ser. ”Mathematics, Applied Mathematics and Mechanics”. 87, 29-41. (2018). DOL:
10.26565/2221-5646-2018-87-03

[2] Bellman R.E.: Dynamic Programming. Princeton, NJ: Princeton Univ. 392 p. (1957).

[3] Lewis F.L., Vrabie D.L.: Reinforcement learning and adaptive dynamic programming
for feedback control. IEEE Circuits and Systems Magazine. 9(3), 32-50. (2009). DOI:
10.1109/MCAS.2009.933854
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Periodic Camassa—Holm equation via Fokas method
Iryna Karpenko (Kharkiv, Ukraine and Vienna, Austria)

Recently [1, 2], it has been shown that that the initial boundary value
problem on a finite interval with z-periodic boundary conditions for the
nonlinear Schrédinger (NLS) equation

i + Gox + 2|q)Pqg =0

belongs to the class of so-called linearizable problems. For such prob-
lems, the solution ¢(z,t) can be represented in terms of the solution of
a Riemann—Hilbert (RH) problem, whose data — namely, the jump ma-
trix and residue conditions — can be expressed in terms of the entries of
the scattering matrix associated with the initial data.

In this work, we develop this formalism for the Camassa—Holm equation

( m—|—1> :—<u m—|—1) , M = U — Ugy
t T

which models the unidirectional propagation of shallow water waves over
a flat bottom. The key idea is to employ both equations of the associ-
ated Lax pair as spectral problems simultaneously. In this approach, the
z-equation of the Lax pair generates the spectral (scattering) problem cor-
responding to the initial data, while the t-equation leads to two additional
spectral problems associated with the boundary values at the endpoints of
the interval. These spectral functions are connected through a global re-
lation, which encodes the compatibility between the initial and boundary
data. Consequently, one can formulate a Riemann—Hilbert problem whose
data (jump and residue conditions) can be expressed entirely in terms of
the spectral functions associated with the initial data only.

IK acknowledges the support from the Austrian Science Fund (FWF),
grant no. 10.55776/ESP691.

[1] Fokas, A. S. and Lenells, J.: A new approach to integrable evolution equations on
the circle. Proceedings of the Royal Society A 477, 2245, 20200605 (2021).

[2] Shepelsky, D., Karpenko I., Bogdanov S., and Prilepsky J.: Periodic finite-band
solutions to the focusing nonlinear Schrodinger equation by the Fokas method: inverse
and direct problems. Proceedings of the Royal Society A. 480, 20230828 (2024).
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Solution estimates of stable linear
differential-difference equations of neutral type

Denys Khusainov| (Kyiv, Ukraine)
Andriy Shatyrko (Kyiv, Ukraine)
Valentyn Petrulia (Kyiv, Ukraine)

This paper considers linear stationary differential-difference equations
of neutral type [1, 2, 3, 4]. The main objective is to construct upper
bounds for their solutions using the second Lyapunov method with Lya-
punov—Krasovskii functionals [5, 6, 7]. Stability problems of dynamical
systems have been studied for many decades, beginning with Lyapunov’s
classical theory of motion stability.

Traditional results for differential equations are often insufficient for sys-
tems with delays, where the present state depends on past values. Neutral-
type equations, which include delayed derivatives, better describe many
real processes but are analytically more complex [8, 9]. Modern research
applies Lyapunov—Krasovskii functionals to obtain explicit solution esti-
mates and stability criteria for such systems [11, 10].

In this work, the second Lyapunov method is employed in its direct
(coarse) form: if the derivative of the Lyapunov—Krasovskii functional is
negative definite, then the system remains stable for all admissible pertur-
bations [4, 6, 7].

[1] R. Bellman, K. Cooke: Differential-Difference Equations, Academic Press, New
York—London, 1963.

[2] J. K. Hale: Theory of Functional Differential Equations, Springer-Verlag, 1997.

[3] V. Kolmanovskii, A. Myshkis: Applied Theory of Functional Differential Equations,
Kluwer Academic Publishers, 1992.

[4] D. Ya. Khusainov, A. V. Shatyrko: Method of Lyapunov Functions in the Study of
Stability of Differential-Functional Systems, Kyiv University Press, 1997.

[5] A. M. Lyapunov: The General Problem of the Stability of Motion, State Publishing
House, Moscow—Leningrad, 1950.

[6] N. N. Krasovskii: Stability of Motion, Stanford University Press, 1963.

[7] M.-J. Park, O. M. Kwon, J. H. Park, S.-M. Lee: A new augmented Lya-
punov—Krasovskii functional approach for stability of linear systems with time-
varying delays, Appl. Math. Comput., 217 (2011), 7197-7209.
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9] Q.-L. Han: A discrete delay decomposition approach to stability of neutral systems,
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[10] J. Diblik, D. Ya. Khusainov, A. Shatyrko, Z. Svoboda: Absolute stability of neutral
systems with Lurie type nonlinearity, J. Adv. Nonlinear Anal., 11 (2021), 726-740.

[11] D. Khusainov, A. Shatyrko, R. Mustafaeva: Estimations of solutions to unstable
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Heat and mass exchange in nature and engineering:
mathematical and thermodynamic optimization
problems
Natalya Kizilova (Kharkiv, Ukraine)

Heat and mass exchangers are widely used for industrial and domestic
heating/cooling of air, water and other working fluids; mixing/separation,
moistening/drying, ionization/deionization of fluids, etc. In nature, effi-
cient heat/mass exchangers in mammals serves for heating/cooling and
moistening /remoistening of the inhaled/exhaled air in cold and hot ambi-
ent conditions, accordingly. It was shown, geometry and operating condi-
tions of the complex structures inside the nasal ducts of such animals are
close to optimal exchangers providing minimum energy lost W — min and
thermal inlet length Ly, — min at given volume V' = const [1], [2], [3], [4].

Here a brief classification of the main design types of the natural ex-
changers proposed as: (I) spiral (II) porous and (III) fractal structures
with certain statistical regularities.

Mathematical multicriteria optimization problem

Zp — min, Zy, — min, Ly, — min, V = const, (1)

where Z; and Z;, are viscous and thermal dissipations in the system is
considered based on the Lagrange multipliers (i), weight coefficients (ii)
and Pareto frontiers (iii) approaches.

Thermodynamic optimization problem

Siyr — min, V = const, (2)

where S, is the entropy production due to irreversible viscous and thermal
processes is solved based on the method of Lagrange multipliers.

The solutions of (1) and (2) are compared and discussed for both natural
structures and nature-inspired solutions for engineered applications from
macro to micro/nano scales like chemical reactors [5].

[1] Magnanelli, E., Wilhelmsen, 0., Acquarone, M., Folkow, L.P.,; Kjelstrup, S.: The
nasal geometry of the reindeer gives energy-efficient respiration. J. Non-Equilib. Ther-
modyn. 42, 59-78 (2017).

[2] Solberg, S.B.B., Kjelstrup, S., Magnanelli, E., Kizilova, N., Barroso, L.L.C., Ac-
quarone, M., Folkow, L.: Energy-Efficiency of Respiration in Mature and Newborn
Reindeer. J. Compar. Physiol. B: Biochem., Systemic, Environ. Physiol., 190, 509-520
(2020).
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[3] Cheon, H.L., Kjelstrup, S., Kizilova, N., Flekkoy, E.G., Mason, M.J., Folkow, L.P.:
Structure-function relationships in the nasal cavity of Arctic and subtropical seals.
Biophys. J. 122, 4686-4698, (2023).

[4] Cheon, H.L., Kizilova, N., Flekkoy, E.G., Mason, M.J., Folkow, L.P., Kjelstrup, S.:
The nasal cavity of the bearded seal: An effective and robust organ for retaining
body heat and water. J. Theor. Biol. 595, 111933, (2024).

[5] Magnanelli, E., Solberg, S.B.B., Kjelstrup, S.: Nature-inspired geometrical design of
a chemical reactor. CHERD, 152. 20-29, (2019).
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Unbounded stability enhancement and finite
transition time
Valery Korobov (Kharkiv, Ukraine)

The theory of stability, created by A. M. Lyapunov, was presented in
his book “The general problem of the stability of motion”, published in
Kharkiv in 1892 [1]. This theory has been developed continuously to the
present day. After the appearance of optimal control theory and Pon-
tryagin’s maximum principle, various aspects of control theory began to
develop. The stabilization problem, which involves the construction of a
control that ensures the stability of the equilibrium point, has been consid-
ered in great detail. The optimal stabilization problem is also considered,
but without taking into account the control constraints. It also turned out
to be possible to consider the stabilization problem over a finite time in-
terval. The more general problem considered is reaching an arbitrary fixed
point, not necessarily optimal, in a given region of the phase space. One
of the challenges of this problem is to construct a control that satisfies the
predefined constraints.

For this problem, the controllability function method was proposed by
the author [2]. One way it can be constructed, together with the cor-
responding control that satisfies the given constraints in the case of a
canonical system, is as follows [3]. The control is chosen in the form

u=>y g Li; where O(z) is a controllability function defined by the
i=1

equation

2000 = (D(©)FD(O)x, x).

Here, the coefficients a; are chosen in such a way that the system @; = o,
n

oy Tpo1 = Ty, T, = Y a;r; is stable. In the proposed control, due
i=1
to the convergence to zero of the function ©(z) as x — 0, the degree of

n
stability of the system &1 = xo, ..., &y 1 = Tp, Tp = D Gn,“—ﬂ(sg)xl increases
—1

unboundedly. This means the following. As t — oo Zt_he degree of stability

of the matrix
0 1 ... 0
0 0 o1

or(z) O Hax) "' Ox)
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tends to infinity. The eigenvalues of the matrix

0O 1 ... 0
121: : : .o
0O 0 ... 1
ay Qa2 ... Qp

are multiplied by %. This allows reaching the origin in finite time.
Another approach to stability enhancement that allows reaching the

origin under control constraints is the following. In the canonical system,
n

the control is chosen as u = ai

00—t

x;, where © > 0 is a fixed constant. As

=1
t — O the degree of stability of the matrix

0 1 . 0

0 0 |

a1 a (79
(@_t)n (@—t)n_l e Ot

gradually increases. The eigenvalues of the matrix A are multiplied by

ﬁ. For t = ©, we reach the origin, and for a large enough value of O, the

control satisfies the given constraints.

[1] Lyapunov, A.M.: The General Problem of the Stability of Motion. Kharkiv Mathe-
matical Society, Kharkiv (1892).

[2] Korobov V.I.: A general approach to the solution of the bounded control synthesis
problem in a controllability problem. Mathematics of the USSR-Sbornik, 37(4), 537-
557 (1980).

[3] Korobov, V.I., Sklyar, G.M.: Methods for constructing positional controls, and a
feasible maximum principle. Differ. Equ. 26(11), 1914-1924 (1990).

[4] Korobov V.I.: The method of controllability function, R&C Dynamics, 1-576 (2007).

[5] Korobov, V.I., Skoryk, V.O.: Construction of restricted controls for a nonequilibrium
point in global sense. Vietnam Journal of Mathematics 43(2), 459-469 (2015).

[6] Korobov, V., Stiepanova, K.: The peculiarity of solving the synthesis problem for
linear systems to a non-equilibrium point. Journal of Mathematical Physics, Analysis,
Geometry 17(3), 326-340 (2021).

[7] Korobov, V.I.: The principle of stability enhancement and finite transition time.
[Submitted for publication)]
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Construction of control from a point onto a surface

Valery Korobov (Kharkiv, Ukraine)
Oleh Vozniak (Kharkiv, Ukraine)

We consider the problem of admissible and time-optimal control for the
linear system

t = Ax + Bu, x € R", (1)

from a point zp € R" onto a surface G = {z : F(z) = 0} both with and
without constraints on the control. In our paper, we present explicit ways
to construct such controls. We consider the general case when the system
(1) may not be completely controllable, but it holds that

where L is the linear span of the columns of Kalman’s controllability ma-
trix. The condition (2) comes from the paper [1] by V. I. Korobov, where
it was proven that the system (1) is controllable on a surface G in an arbi-
trary time 7' if and only if this equality holds. Other papers related to the
problems of admissible and optimal control onto a surface include [2, 3, 4].

The first step of the proposed approach consists of mapping the system

(1) on the system
y = A11y7 (3)
z = Agly + AQQZ + Blu,

via a linear change of variables. The system (3) has two parts, which we
call the controllable and uncontrollable part. If there are no constraints,
we construct the control using the known formula

u(t) = —Bje A2IN"13),

where 2 is calculated as Zy = —e 42Tz + 2, + fOT e~ 42T Agy(T)d 7.

Under control constraints u € €2, we apply to the system (3) the control-
lability function method proposed by V. I. Korobov in [5] and its extensions
for control to a non-equilibrium point [6, 7]. Unlike previous problems, we
show that in our formulation the desired constrained control may not exist.
An important case for which we show that the solution does exist is when
the controllable part has the canonical form and the uncontrollable part
has constrained trajectories.

The time-optimal control is constructed using the moment min-problem
approach proposed by V. I. Korobov and G.M. Sklyar in [8]. The addi-
tional constraints include optimization with respect to unknown parame-
ters ag, ..., ax, which determine the position of endpoint on the surface.
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Other problems considered include the controllability problem between
two surfaces, the time-optimal control problem from a bounded set onto a
subspace, and the problem of maintaining a trajectory on a surface.

[1] Korobov, V. I.: A general approach to the solution of the bounded control synthesis
problem in a controllability problem. Math. USSR-Sbornik 37(4), 535 (1980).

[2] Korobov, V. 1., Lucenko, A. V.: Controllability of a linear stationary system onto a
subspace for an unfixed time. Ukrainian Mathematical Journal 29(4), 531-534 (1977).

[3] Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., Mishchenko, E. F.: The
Mathematical Theory of Optimal Processes. Wiley, NY (1962).

[4] Jankovi¢, V.: The linear optimal control problem with variable endpoints. Publica-
tions de I'Institut Mathématique, Nouvelle Série 45(59), 133-142 (1989).

[5] Korobov, V. 1.: A general approach to the solution of the bounded control synthesis
problem in a controllability problem. Math. USSR-Sbornik 37(4), 535 (1980).

[6] Korobov, V. 1., Skoryk, V. O.: Construction of restricted controls for a nonequilib-
rium point in global sense. Vietnam Journal of Mathematics 43(2), 459-469 (2015).

[7] Korobov, V., Stiepanova, K.: The peculiarity of solving the synthesis problem for
linear systems to a non-equilibrium point. J. Math. Phys. Anal. Geom. 17(3), 326-340
(2021).

[8] Korobov, V. I., Sklyar, G. M.: Time optimality and the power moment problem.
Math. USSR-Sbornik 62(1), 185 (1989).
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Control synthesis of homogeneous approximations of
nonlinear systems

Marcin Korzen (Szczecin, Poland)
Jarostaw Wozniak (Szczecin, Poland)
Grigory Sklyar (Szczecin, Poland)
Mateusz Firkowski (Szczecin, Poland)

The objective of the talk is to describe computational methods of control
synthesis for a certain class of nonlinear driftless control systems. Such
systems are previously found to be simplifications (called homogeneous
approximations) of more complicated non-linear systems that still preserve
most crucial properties of the original ones like controllability. The class of
systems in question have a special feed-forward form that is sufficiently easy
to integrate and allows to solve concrete problems in control theory. Here
we continue our research with describing the computational procedure for
control synthesis as the extension of existing software libraries in Python
language. We show that our approach leads to faster computation times
compared to standard methods. The results are illustrated with some
numerical experiments and simulations.

[1] Korzen, M., Sklyar, G.M., Ignatovich, S.Y., Wozniak, J. (2024): Computational
aspects of homogeneous approximations of nonlinear systems. Proc. ICCS 2024, 368—
382.

[2] Korzen, M., Wozniak, J., Sklyar, G., Firkowski, M. (2025). Control Synthesis of
Homogeneous Approximations of Nonlinear Systems. Proc. ICCS 2025, 3-16.
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Weak and strong nilpotency of distributions in action
Piotr Mormul (Warsaw, Poland)

The first aim is to recall the notions of the weak and strong nilpoten-
cies of vector distributions satisfying the bracket generating (Hérmander)
condition. (The weak nilpotency is a modern name for the local nilpo-
tentizability. The strong nilpotency implies the weak one, but not vice
versa. )

The classical playground for discussing these notions are Goursat dis-
tributions, known for more than 120 years and featuring a rich tree of
singularities. It is known since the year 2000 that the Goursat distribu-
tions are everywhere weakly nilpotent. But not everywhere strongly nilpo-
tent, i.e., not everywhere equivalent to their nilpotent (or: homogeneous)
approximations.

The second and main aim is to bring about the problem of finding all
strongly nilpotent Goursat distributions. That is, equivalently, the problem
of ascertaining all strongly nilpotent points in the stages of the so-called
Goursat Monster Tower. A general road map to the solution has been
sketched during the RIMS Sing 1 conference in Kyoto (Japan) in the year
2022. However, that road still awaits filling in its many technical details.
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Experimental models of the interfacial MHD
instability in two immiscible liquid layers (Review)
Sergii Poslavskyi (Kharkiv, Ukraine)

Industrial production of aluminum using the Hall-Héroult process is
a complex technology. And laboratory studies of magnetohydrodynamic
(MHD) instabilities arising there face significant difficulties, since it is im-
possible to recreate the temperature regime of aluminum reduction cells
under laboratory conditions. Therefore, it was important to find a sub-
stitute for cryolite and aluminum for use in laboratory experiments. In
most experimental studies, the two-layer liquid system was replaced by a
single-layer model [1, 2]. But this approach cannot take into account the
main features, such as the small difference in the densities of the two lay-
ers and the large difference in their electrical conductivities. And only in a
few studies was it possible to reproduce the MHD instability of a two-layer
liquid system [3, 4]. It should be noted that similar problem associated
with possible MHD instabilities arises in liquid metal batteries designed to
store large amounts of electrical energy [5].

[1] Pedchenko, A., Molokov, S., Priede, J., Lukyanov, A., Thomas, P. J.: Experimental
model of the interfacial instability in aluminium reduction cells. Europhysics Letttrs,
88(2), 24001 (2009).

[2] Hegde, P., Gundrum, T., Horstmann, G.M.: A model experiment to study the metal
pad roll instability under ambient conditions. Experiments in Fluids 66, 76 (2025).

[3] Borisov, I.D., Poslavskii S.A., Rudnev J.I.: Experimental study of wave processes
in a two-layer system of immiscible current-carrying liquids. Appl Hydromech 12(1),
3-10 (2010).

[4] Grants, 1., Baranovskis, R.: Experimental observation of metal-electrolyte interface
stability in a model of liquid metal battery. Magnetohydrodynamics 57(2), 171-180
(2021).

[5] Duczek, C., Horstmann, G. M., et al.: Fluid mechanics of Na-Zn liquid metal bat-
teries. Appl. Phys. Rev. 11(4), 041326 (2024).
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On the controllability problem for a system of three
connected tanks
Tetiana Revina (Kharkiv, Ukraine)

Let us consider a system of three connected tanks

T1 = —T1 + Ta,
To9 = T — 3T9 + 3 + U,
T3 = To — X3,

2(0) = 2°, 2(T) = 0.

(1)

where x € R3, u € R is a control. This system can be reduced to the

-1 1 0 0
form £ = Ax + Bu, where A = 1 -3 1], B=111].This
0 1 -1 0

system is not completely controllable because rank of Kalman matrix [1]

rank(B, AB, A’B) = 2. Let us denote by L the linear span of the columns
0 1

of Kalman matrix L = Lin(B,AB,A*’B) = Lin | 1 0 | and call it the
0 1

controllability subspace. This means that z{ = 2.

The case 1. Apply the Cauchy formula
t
z(t) = ez’ + e /Q_ATBU(T)dT.
0

Then substitute ¢t = T and use z(T) = 0 : 2° = —fo ~A7 Bu(t)dr.
Let us consider the case u(t) = const = c. If 2 = 2§ then ¢ = 0 If
23 V34

) = 29 + k then ¢ =

etV3 — 1
The case 2. To split the initial system (1) into controllable and un-
controllable part we introduce the change of variables

Y1 = r1 — 13, U1 = —y1,
21 = X9, so we get 2 = =321 + 20 + u, (2)
Zo = X1 + I3, Zo = 221 — 29.

Let control satisfy the constraint |u| < 1. Let us investigate the synthesis
problem for the controllable part of this system (z; and z3). Our approach
is based on the Controllability Function Method proposed by V.I. Korobov
in 1979. This problem consists in constructing a control in explicit form
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which depends on phase coordinates and steers an arbitrary initial point
from a neighborhood of the origin to the origin in a finite time (settling-
time function). Next we follow the paper [3] where the Controllability
Function is proposed and the paper [2] where restriction on ag is found.

Theorem 1. For any z # 0 define the Controllability Function © = O(z)
as the unique positive solution to the equation

15eE+2V3)0 4 o(442V3)0(9 4 80) 4 16e(4H4V3O(—1 4 (—4 4 21/3)0)—
—16e%©(1 + (4 + 2¢/3)O + 3¢2V30(5 + 400 + 1602) =
— —24[[(—28 4 161/3)e® + (—28 + 164/3)eH4V3)0 4 9p(4+2V3)0
+(54 + 240)e2V30) 22 4 [(20 + 12V/3)eO+
+(20 — 12¢/3)e@H4V3)0 | 9p(4+2V3)0 _ (98 4 240))e2V30) 2 2, —
—[(4 4 2v/3)e*® + (4 — 2/3)edH4V3O 4 9.(4+2V3)0 _ (9 4 190)2V30)2],
3
besides, the domain of solvability synthesis problem s the ellipsoid Q) Ele)—
fined by Q ={z: O(z) <c}. At z =0 we put O(0) =
Then in the domain () the control

u(z) = —8e*90[(—28 — 16v/3) + 2e2V3© 4+ (—28 4 164/3)e V301

+(54 + 240)e(~H2V30 21 [(—10 — 61/3) — €2V3© 4 (=10 + 6v/3)e?V39+
(21 + 120)e(-4+2V3)0] ) /[ 15230 _ (2 4 8@)e(++2V3)0 4

+(16 — 32(—2 + /30))e V3O L (16 + 32(2 4 /30))et®

—(15 + 1200 + 480?2)e2V39)

(4)
solves the local feedback synthesis problem for controllable part of the system
(2) and satisfies the constraint |u| < 1. Besides the Controllability Function
equals to the time of motion (settling-time function) from any initial point
2 € Q to the origin.

[1] Kalman R.E. Contributions to the theory of optimal control// Bol. soc. mat. mexi-
cana 1960, 5.2: 102-119.

[2] Korobov V.I., Revina T.V. On the feedback synthesis for an autonomous linear
system with perturbations// Journal of Dynamical and Control Systems, 2024.
https://doi.org/10.1007/s10883-024-09690-4

[3] Korobov V.I., Sklyar G.M. Methods for constructing positional controls, and a feasi-
ble maximum principle// Dif. Equ. 1990; 26(11): 1422-1431, transl. from Diff. Uravn.
1990;26(11): 1914-1924,
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Virus infection model with advection—diffusion on
two spatial domains

Alexander Rezounenko (Kharkiv, Ukraine)

Many viruses continue to be major global public health issues. Under-
standing the dynamics of viral infections and spread is crucial for develop-
ing effective prevention and control strategies.

We discuss qualitative properties of several mathematical models of viral
infections. Our prime interest is in different classes of virus dynamics
models with reaction-diffusion, logistic growth terms and a general non-
linear infection rate functional response.

Let Q1 C R? be a connected bounded domain (representing a susceptible
organ) with a smooth boundary 0. Let T'(¢t,z), T*(t, x), V(t,x), Y (¢, ),
and A(t,z) represent the densities of uninfected cells, infected cells, free
virions, CTL immune cells, and antibodies at position x € 2; at time ¢,
respectively. The following system of PDEs with three distributed delay
terms was investigated in [1].

[ T(t0) = rT(t ) (1= TE2) = dT(t ) — fT(T (), V(@) + d AT (¢, ),
T (t,2) = T () (1= 252 ) emh [0 FT(T(t+ 0,2), V(t+0,2))€7 (0,2, ur) df
' —6T*(t,x)— Y (T*(t,2), Y (t, ) +d>AT*(t, z), (1)
V(t,z) = N6T*(t,z) — cV(t,z) — fAV(t,2), Alt,z)) + d>AV (t,z), x € Q.
Y(t,x) = e [0 YTt +0,2),Y (¢ +0,2))€Y (0, x,u) d — VY (t,2) + d*AY (L, z)
A(t,z) = et ffh fAV(t+0,2), A(t + 0,2))640, z,us) dO — bA(t, ) + dPAA(t, )

The class of delay terms includes the state-selective delays [2, 3].
We consider the general functional responses fI(T,V), fY(T*,Y)), and
fA(V, A) satisfying natural assumptions.

As wusual, for a delay system [4] one denotes w; = w(f) =
u(t + 6) for 8 € [—h,0,h > 0. We denote u(t) = u(t,:) =
(T'(t,-), T*(t,-),V(t,-),Y(t,-),A(t,-)) and add initial conditions to the de-
lay system (1):

u(®) = ¢(0) = (T(9),77(9),V(0),Y(0), A(®)), 6 <[=h0, (2

or, in short, uy = .
In the mathematical literature for such a biological system it is standard

to consider the no-flux boundary conditions (the Neumann B.Cs.) i.e.
ag—f)\agl = 0, where n denotes the exterior normal to the boundary 0€2;.

Asymptotic long-time behaviour of the solutions of (1), (2) is discussed.
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We continue our study and develop a virus dynamics model, formulated
on two spatial domains, which incorporates reaction—advection-diffusion
processes and logistic growth. For a two-domain problem, a careful analysis
of boundary conditions becomes especially important given the biological
motivation.

The main result is the existence of a finite-dimensional global attractor
for a dynamical system constructed in a Hilbert space. The main mathe-
matical tool in our study of the long-time asymptotic behaviour of solutions
is the quasi-stability method developed by I. Chueshov (for more details and
definitions see [5]).

A persistence property is established, ensuring the uninfected suscepti-
ble host cells T and infected host cells T persist over time (in the domain
). It is important to mention that the persistence result on two spatial
domains significantly differs from the corresponding one for the model on
one spatial domain (see [1]). Namely, we have no persistence result for virus
particles V' on the domain €2,. The last has a clear biological background.

[1] A. Rezounenko, Viral infection model with diffusion, immune responses and dis-
tributed delay: finite-dimensional global attractor. Communications on Pure and Ap-
plied Analysis, Vol. 23, No. 7, 984-996 (2024). https://doi.org/10.3934 /cpaa.2024043

[2] A. Rezounenko, J. Wu, A non-local PDE model for population dynamics with state-
selective delay: Local theory and global attractors. J. Comput. Appl. Math., 190,
99-113 (2006). https://doi.org/10.1016/j.cam.2005.01.047

[3] A. Rezounenko, Partial differential equations with discrete and distributed state-
dependent delays. Journal of Mathematical Analysis and Applications, 326, 1031-
1045 (2007). 10.1016/j.jmaa.2006.03.049

[4] J. K. Hale, Theory of Functional Differential Equations, Springer, Berlin- Heidelberg-
New York, (1977). https://doi.org/10.1007/978-1-4612-9892-2

[5] 1. Chueshov, Dynamics of Quasi-Stable Dissipative Systems. Springer, Cham, (2015).
https://dot.org/10.1007/978-3-319-22903-4

[6] A. Rezounenko, Viral infection model with advection—diffusion, immune responses
and distributed delays. Mathematical Methods in the Applied Sciences, submitted
2025.
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Asymptotic behavior of eigenpairs of convolution
type nonlocal operators

Volodymyr Rybalko (Kharkiv, Ukraine)
Antonina Rybalko (Kharkiv, Ukraine)

Many mathematical biology and population dynamics models involve
nonlocal diffusion corresponding to long-range interactions in a sys-
tem. These models are typically described by evolution problems with
convolution-type integral operators and their qualitative and quantitative
properties can be obtained by studying of the corresponding spectral prob-
lems.

We consider spectral problems

_sid 0 J(:C B y)“(fca Y)p-(y)dy + a(x)p-(x) = Ap-(2) (1)

in a bounded domain in Q C RY, where J(z) > 0 is a continuous function
on R? decaying sufficiently fast as |z| — oo, K € C2(Q x Q), K > 0 and
(the potential) a € C?(Q); ¢ > 0 is a scaling parameter. We study the
asymptotic behavior of eigenvalues and eigenfunctions of (1) in the limit
of small parameter ¢.

We focus on the self-ajoint case when J(z) = J(—2), k(z,y) = k(y, z)
and show that the principal eigenvalue of (1) exists for sufficiently small €
and converges to the minimum

m(z*) = mﬁin m(x), where m(z) = a(x) — k(z, x).

More precise asymptotic description is obtained when m satisfies some
non-degeneracy conditions at z*. Namely, if the minimum is strict and the
point z* is an inner point of {2 then we suppose the positiveness of Hessian
and via rescaling by €'/ we derive a limit differential spectral problem of

the form:
—divAVp + 8%m(x*)zisz = up in RY, (2)

We prove that
Ae = m(x") + e + o(e),

where py are eigenvalues of (2). The case z* € 0f) is more sophisticated
and we consider the situation when 2 is a polyhedron and m(z) attains
its strict minimum at z* on a face of 9€2. Without loss of generality, we
assume that x* = 0 and locally € is given by x; > 0 in a neighborhood of 0.
Then the non-degeneracy condition reads: d,,m(0) > 0, Giéxgm(O) i >



48 DIFFERENTTAL EQUATIONS and CONTROL THEORY

0 V¢ € R\ {0}. Under these conditions, we establish the following
asymptotic formula for the eigenvalues

A = m(0) + A& + (B4 e + o(e),

where A; is the principal eigenvalue of the 1D problem —0¢{(t) 4+ atpy(t) =
Ai1gg(t) on Ry, ¢9(0) = 0, py are eigenvalues of a harmonic oscillator
in RY"L. In this case, eigenfunctions have the asymptotic form p.(x) =

do(e23x) v(e 1 %2") + ..., that reveals emergence of two fine scales £%/3
and ¢'/2,
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Global semigroup of weak solutions of the Novikov
system
Yan Rybalko (Kharkiv, Ukraine)

In my talk I will discuss the global well-posedness of the Cauchy problem
for the two-component Novikov system, which reads as follows:

my + (uom), +vu,m =0,  m=m(t,x), u=u(t,z), v="1(t ),
ny + (uon), + uv,n = 0, n = n(t,z), (1)
Mm=uU—Upy, " =0V— Uy, U,UVER, ¢t xeck.

We assume that the initial data (ug, vg) belongs to the metric space (323, dy):

2={(f,9): f,g € H(R) and || fog:|lr2m) < o0},
ds((f1:91), (2, 92)) = Il fr = Follip + g1 — gollip
+ ||(axf1>axgl - (ame)axQQH%?

Notice that (X, dy) is a complete metric space, but not a linear space [4].
System (1) was introduced in [3] as a generalization of the scalar Novikov
equation, which has the following form:

my + (uPm), +uuem =0, m = u — Uy, (2)

Observe that (1) with u = v is equivalent to (2).

Applying the method of characteristics and the Bressan-Constantin ap-
proach [1], the work [2] constructs the global conservative weak solutions
(u,v)(t) of (1) for the initial data (ug,vy) € (HlﬂWlA)Q, such that
(u,v)(t) € . Since (H'N W1’4)2 C 3, these solutions do not preserve
the regularity, and there is no hope to have a semigroup property for such
solutions.

In our work [4], we address this question by revisiting the method of
characteristics for the general initial data (ug,vg) € 3. Then, to construct
a semigroup, we must consider the possible energy concentration of either
w2 dx, v2dz, or (u?v?) dz. To this end, we retain additional information
about the global solution (u,v)(t) by considering the following positive
Radon measure p; on R (here p; = pf° + pf, where pf® and pf are, respec-
tively, the absolutely continuous and singular parts of y; with respect to
the Lebesgue measure on R):

dpy = (uf +v3 + uiv2) (t) de.
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Moreover, we must retain certain sets Dy (t), Dz(t) C R, which are not
empty if pf # 0. Then, we can show that the map

Wy (o, vo, tto; Dwo, Dzo) = (u(t), v(t), u; Dw(t), Dz(t)),
satisfies the semigroup property.

Acknowledgment. This work was supported by the European Union’s

Horizon Europe research and innovation programme under the MSCA
grant No 101058830.

[1] A. Bressan, A. Constantin. Global conservative solutions of the Camassa-Holm equa-
tion. Arch. Ration. Mech. Anal. 183, 215-239 (2007).

[2] He C., Qu. C.: Global conservative weak solutions for the two-component Novikov
equation. J. Math. Phys. 62, 101509 (2021).

[3] Li. H.: Two-component generalizations of the Novikov equation. J. Nonlinear Math.
Phys. 26(3), 390-403 (2019).

[4] Karlsen K.H., Rybalko Ya.: Global semigroup of conservative weak solutions of the
two-component Novikov equation. Nonlinear Anal. RWA 86, 104393 (2025).
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Inverse scattering transform spectrum
characterization of time-limited signals

Dmitry Shepelsky (Kharkiv, Ukraine)
Iryna Karpenko (Kharkiv, Ukraine; Vienna, Austria)

The nonlinear Schrédinger (NLS) equation
iq: + qu + 2lql*q = 0,

is an integrable nonlinear PDE, where ¢(t, z) models a slow-varying com-
plex electromagnetic field propagating along an optical fiber, with z being
the distance along the fiber and ¢ the retarded time. We are interested
in the properties of the signals important in the framework of the “b-
modulation” method, which is the nonlinear signal modulation technique
that provides explicit control over the signal extent.

Namely, we provide a rigorous analysis of the spectral properties of
signals in the case where the time-domain profile of a signal corresponding
to the b-modulated data is finitely supported:

L
b(k) = /_Lﬁ(T)e“WdT with some (1) € L'(—L, L)

(which corresponds to a signal ¢ such that ¢(t) = 0 for |t > £) and
when the bound states corresponding to specifically chosen discrete soli-
tonic eigenvalues and norming constants, are also present. The analysis is

given for the inverse problem for the Zakharov-Shabat system

O, (t, k) = —ik ((1) _01> O(t, k) + (_;(t) qg)) d(t, k), (1)

which is the spectral equation form the Lax pair associated with the NLS
equation. Using the Riemann-Hilbert problem formalism for the inverse
scattering problem for (1), we prove that the number of solitary modes that
we can embed without violating the exact localization of the time-domain
profile, is infinite, and present the characterization of the set of all possible
solitonic eigenvalues using the Riemann-Hilbert problem formalism.

[1] Shepelsky, D, Vasylchenkova, A, Prilepsky, Ja.E., and Karpenko, I.: Nonlinear
Fourier spectrum characterization of time-limited signal., IEEE Transactions on
Communications 68, no. 5, 3024-3032 (2020).
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One class of C)-groups with sub-linear growth on
dense subsets
Grigory Sklyar (Szczecin, Poland)

Vitalii Marchenko (Poznan, Poland; Kharkiv, Ukraine)
Piotr Polak (Szczecin, Poland)

We consider a special class of linearly growing Cy-groups from [1], whose
generators are essentially nonselfadjoint unbounded operators, i.e. they are
not similar to any selfadjoint operator. More precisely, let {e,}>2; be a
Riesz basis of a separable Hilbert space H. Then

Hy ({e,}) = {:U = (f) chen s en — e}l €4y, cp = 0} :

n=1

is a Hilbert space of all formal series (f) > c¢pe,, and {e,}>2; is complete
n=1
and minimal sequence in space H; ({e,}) (H; for short) but does not form

a Schauder basis of Hj, as it was shown in [1].
Furthermore [1], for each {f(n)} ~, € Si, where

Si = {{FmY2, CR: lim f(n) = o0 {n (F(n) — Fln— D)2, € o}
the operator A; : H; D D(A;) — Hjy, defined by

A = A <(f) Z Cnen) = (f) Z if(n) - cnen,

with domain

D(Ay) = {x = (D coen € Hi: {f(n)-co—fln—1) cia}i € g2} :

n=1
generates the following Cy-group on Hi,

00} 0

ety = () Z cnen = (f) Z etfMee,, teR. (1)

n=1 n=1
Assume that there exists a constant K > 0 such that Vn € N we have
nlfn) = fln—1)| 2 K. &)

Then, as it was proved in [2], [3], the Cy-group {eAlt} g Das an exact linear
growth, i.e. there exists a linear function [, with positive coefficients, and
constant C' > 0 such that for all £ € R we have

Clt] < fle™|| < u(le)- (3)
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In a recent work are taking the next step in the asymptotic analysis of
this class of Cy-groups, i.e. the study of asymptotics of the norm of this
Co-group on certain dense subsets of the phase space H;.

Theorem 1. Let {eAlt}teR be the Cy-group as above, defined on the space
Hy, where {f(n)} ~, € Si and is monotonic. Let k € NU{0} and assume
that there exists a constant K > 0 such that Vn € N we have

n|f(n) = fln—-1) = K. (4)

Then there exist constants My > my > 0 and ty > 0 such that for any
[t > to,

] < HeAltAl—kH < M, ]

(f(£)*F (f(2))*
where f(t) is any continuous and even extension of the sequence {f(n)}
to R.

(5)

mg

neN

The proof of this theorem uses the discrete form of the classical Hardy
inequality for p = 2 several times. Note that in the case k = 0 the two-sided
estimate (5) turns into (3).

Theorem 1 means that these Cy-groups {eAlt} g Dave sub-linear growth
on D(AF) and we know an exact hierarchy of growth, i.e. as k increases
it turns out that the rate of growth strictly decreases. And this fact,
in its turn, implies the sub-linear growth of the classical (starting from
D(A;)) and all more regular (starting from D(A}), k > 2) solutions of the
corresponding Cauchy problems for the abstract linear evolution equations

T = Az, z(0) = x,

on the space H;.

[1] Sklyar, G., Marchenko, V.: Hardy inequality and the construction of infinitesimal
operators with non-basis family of eigenvectors. J. Funct. Analysis. 272(3), 1017-1043
(2017).

[2] Sklyar, G., Marchenko, V., Polak, P.: One class of linearly growing Cy-groups. J.
Math. Phys. Anal. Geom. 17(4), 509-520 (2021).

[3] Sklyar, G., Marchenko, V., Polak, P.: Sharp polynomial bounds for certain Cy-groups
generated by operators with non-basis family of eigenvectors. J. Funct. Analysis.
280(7), 108864 (2021).
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Differential equation ay’ = by™ in the ring of power
series over some commutative rings
Roman Skurikhin (Kharkiv, Ukraine)

Let R be a commutative unique factorization domain (UFD) with char-
acteristic zero, meaning that R is a commutative ring with unity in which
every non-zero non-unit element can be uniquely factored into irreducible
elements (up to units and order of factors), and n - 1z # 0 for all n € N.
For example, R can be the ring of integers Z.

Let a,b,cy € R, a,b # 0. Consider the Cauchy problem in the ring of
formal power series with coefficients in R:

ay' = by™, y(0) = cy.

We seek a solution in the form of a formal power series R][[z]]:
e}
y = chxk, cr € R.
k=0

Theorem 1. The existence of a solution in R[[x]] depends on the value of
m as follows:

1. If m = 1, consider the equation y' = vy, then there is a mon-zero
solution if and only if R contains all rational numbers.

2. If m = 2, Cauchy problem ay' = by, y(0) = ¢y has a solution in R[[x]]
if and only if
a | bco.

3. If m > 3, let d = m — 1. For each prime element m € R lying
over a rational prime p | d (that is, w | p in R), denote by v.(-) the
corresponding m-adic valuation in R. Then define

r=T[ ~ [on0)/ -1 |
7|p, pld
Then a solution of the Cauchy problem ay’ = by, y(0) = ¢y exists in
R][x]] if and only if
ar|bct.

Remark 1. In case m = 3, intuitively, r collects all prime divisors in R
that originate from the primes p dividing d, raised to the minimal powers
ensuring integrality of the coefficients in the formal solution.
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Corollary 1. Suppose, Q € R. Then equation vy = y™ admits a formal
power series solution with coefficients in R for every initial value y(0) =
co € R if and only if m = 2.

Corollary 2. Let m > 2. Then equation y' = y™ has a non-zero formal
power series solution for some initial value y(0) = ¢y € R.

This behavior is reminiscent of the case of the ring of formal Laurent
series with negative powers. According to the so-called Theorem “about
two” from [2], in the Laurent series setting the equation y' = y” admits
a non-zero solution only when m = 2. Thus, in both the power series
and Laurent series contexts the case m = 2 is exceptional, although in the
power series case nonzero solutions also exist for other values of m.

[1] Gefter, S.L., Piven’, A.L. Partial Differential Equations in Module of Copolynomials
over a Commutative Ring. J. Math. Phys. Anal. Geom. 21, 1 (January 2025), 56-83.

[2] Nazarenko H.V. 2023, Some differential equations in the module of copolynomials

over a commutative ring, master’s qualification work, p. 1-23.
URL: https://ekhnuir.karazin.ua/handle/123456789 /18863
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One constructive problem of controllability for LS

Kateryna Stiepanova (Kharkiv, Ukraine; L’Aquila, Italy)
Valerii Korobov (Kharkiv, Ukraine)

In many cases, it is very difficult to find a control that solves the problem
of timeoptimal control. As already noted in [1] an interesting problem is
getting from arbitrary point to the given point in a finite time with control
restrictions. Return sets whose points are transferable into themselves
after a certain period in detail studied in [2], a lot of interesting research
is also available in case of attaining into stationary point, but usefully to
solve so-called ”the constructive problem of controllability”, which satisfies
given restriction and transfers an arbitrary point to a given non-equilibrium
point in a finite time using the controllability function method, which was
proposed by V. I. Korobov in [3]. In [4] was carried out the problem of
construction of a constrained control, which transfers a system from initial
point to a given non-equilibrium point in a finite time was initiated in the
paper [5]. Through the article [4] we solved this problem for arbitrary
linear systems and for nonlinear systems like & = f(z,u), * € R", u €
Q={ue R : |ul| <d} C R", which can be reduced to linear ones,
were illustrated results on model examples, discussed nuances and feature
that arise in solving the equation that defines the controllability function,
which have not been identified previously.

[1] Stiepanova K.V., Korobov V.I.: The synthesis problem for LS to a non-equilibrium
point. 5rd International Scientific Conference DECT — 2021. — September 27-29, 2021,
Kharkiv, Ukraine. — 2021. — P. 28.

[2] Conti, R.: Return sets of a linear control process. Journal of Optimization Theory
and Applications 41 (1), 37-53, (1983).

[3] Korobov V. I.: A general approach to the solution of the problem of the bounded
control synthesis problem in a controllability problem. Math. USSR Sb. 37 (4), 535-
557, (1980).

[4] Stiepanova K, Korobov V.. The peculiarity of solving the synthesis problem for
linear systems to a non-equilibrium point. Journal of Mathematical Physics, Analysis,
Geometry 17 (3), 326-340, (2021).

[5] Korobov V. 1., Skoryk V. O.: Constraction of restricted controls for a non-equilibrium
point in global sense. Vietnam Journal of Mathematics 43 (2), 459-469, (2015).
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Solving the problem of finding the optimal time to
switch to another drug in oncology

Ivan Tiurdo (Kharkiv, Ukraine)
Natalya Kizilova (Kharkiv, Ukraine)

Oncologists widely recognize cancer as a complex system. Such systems
are characterized by biological, chemical, and mechanical structures that
change over time to support tumor growth [1]. Most cancers are treatable
with surgery, radiation therapy, or chemotherapy, especially when detected
early. Chemotherapy is one of the most common and effective methods
of fighting cancer [2]. Despite its success, chemotherapy is not without
limitations. One of the main drawbacks is the toxicity of chemotherapeutic
drugs.

Let us assume that drug A, which was selected as the first-line drug, has
better efficacy, as assessed by RECIST criteria, which divide patients into
those with progressive disease (PD), stable disease (SD), partial response
(PR), or complete response (CR) to the drug. This drug is predicted to
cause the first adverse event (AE) associated with one of the human organs
according to the SDISC classification after a time C';. Another drug, B, is
less effective, but when used, the same AE occurs later than when drug A
is used. It is necessary to find the optimal time to switch from drug A to
drug B in order to simultaneously obtain the longest possible effectiveness
of drug A and to delay the occurrence of AE as long as possible.

In the first stage, we plan to use the system of equations (1) discussed
in [3] as a basis for solving this problem:

(1) = kyu(t)N (),
(t) = kpu(t)L(t),

cT(t)(1 —dT(t)) - azN( )T (t) = BoL(1)T'(t)— (1)
—kTU(t)T( ),

u'(t) = v —wu(t),

(N'(t) = aN(t)(1 — bN(t)) — oqN(t)T
L'(t) N(t>T(t)— L(t) = /i L(¢)T
T'(¢)

\

with initial conditions
N0)=Ny>0, L0)=Ly>0, T(0)=Ty>0, u(0)=mwuy>0.

The first equation of model (1) assumes that NK cells grow logistically
during the period aN(t)(1 — bN(t)). However, they are inactivated due to
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interaction with tumor cells based on —a;N(¢)T'(t). In the second equa-
tion, CTL cells are present in the system when tumor cells are present.
They are recruited by tumor cells via a linear term rN(¢)T'(t). Further-
more, CTL cell death is a linear process —uL(t). Furthermore, interaction
with tumor cells inactivates CTL cells via —py L(¢)T(t).

In the third equation, it is assumed that the tumor grows according to a
logistic function as ¢I'(t)(1 —dT'(t)). In addition, tumor cells are destroyed
by both NK cells and CTL cells, which is implemented by ayN (¢)T'(t) and
PoL(t)T(t), respectively. The chemotherapeutic drug in the last equation
has a constant source v and linearly disappears from the system at —wu(t).
In model (1), since the chemotherapeutic drug affects all three cell pop-
ulations through mass action dynamics, and the mortality rate from the
drug differs for each cell type, three different reaction coefficients were
designated as ky, kr, kr [3].

In the future, we plan to study this system, improve it, and validate
the solution based on information obtained from clinical studies and other
data published by other researchers in this field.

[1] Debnath G., Vasu B., Gorla R.S.R., Beg O.A., Beg T.A. Integrating Mathematical
Models in Clinical Oncology: Enhancing Therapeutic Strategies. Arch Pharmacol
Ther. 2025;7(1):127. https://doi.org/10.33696/Pharmacol.7.060

[2] Ping Liu, Qi Xiao, Shidong Zhai, Hongchun Qu, Fei Guo, Jun Deng. Optimization of
drug scheduling for cancer chemotherapy with considering reducing cumulative drug
toxicity. Heliyon. 2023 Jun 15;9(6):e17297. https://doi.org/10.1016/j .heliyon.
2023.e17297

[3] Ge Song, Guizhen Liang, Tianhai Tian, Xinan Zhang. Mathematical Modeling and
Analysis of Tumor Chemotherapy. Symmetry. 2022, 14(4), 704. https://doi.org/
10.3390/sym14040704
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https://doi.org/10.1016/j.heliyon.2023.e17297
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Return condition and controllability into a
non-equilibrium point
Oleh Vozniak (Kharkiv, Ukraine)

This paper is devoted to the problem of null-controllability into a non-
equilibrium point, and to the concept of the return condition on an interval
proposed by V. I. Korobov in [1] for the linear system

t=Ar+pu), zeR" uweQCR".

The problem of null-controllability to an equilibrium point has been
studied in many papers, including [2, 3, 4]. In this case, it is assumed that
after reaching the origin, there exists a value of control u = wug, such that
¢(ug) = 0, and the system stays at rest indefinitely.

However, one may also consider the case when such a value ugy does
not exist and the origin is not an equilibrium point. Such a problem has
been considered, for example, in [1, 5, 6]. In [1] it was proven that the
system is null-controllable to a non-equilibrium point, if and only if, in
addition to conditions for ordinary null-controllability, the system satisfies
an additional condition, called the return condition on an interval. This
condition means that there exists a time interval I = [T, Ty + al, a > 0,
such that for any 7" € [ it is possible to construct a control such that
trajectory starts at the origin and returns there at time 7.

In the paper, we consider in detail the class of system for which the
return condition is satisfied. We seek the solution in the form of a piecewise-
constant control with values © = % and v = 1, and show that the return

2
condition on an interval is satisfied for the oscillating system

1 = kx _
.1 2 k=1,n, wé€lel], c<
332:—]{?1’1+U,

(1)

N | —

and then generalize the results for an arbitrary linear system with imag-
inary eigenvalues Agr_12r = Etvg, kK = 1,...,n in the case when v}, are
rational, or co-rational (that is 7 is ratlonal for i,j =1,n).

We propose two explicit constructlons of controls that ensure the return
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condition. First solution has n switching moments and has the form

2m
0<t< =5,

2 27
? n+1<t§n+1+a’

2w 2w
, Mooy <t§n—n+1—|—oz,

2T
, nn—H—I—a<t§27T—|—oz.

The second solution utilizes the symmetry of the trajectory and trans-
forms the problem into the exponential form of trigonometric moment prob-
lem:

fOTu(t)e”dt =0,
: (3)
fOTu(t)e””dt =0,

and has only two switching moments, 77 = a and T5 = 27 on the interval
I = [0, 27 + a] for the arbitrary dimension of the initial system.

[1] Korobov, V. I.: Geometric Criterion for Controllability under Arbitrary Constraints
on the Control. J Optim Theory Appl 134, 161-176 (2007).

[2] Korobov, V. I., Marinich, A. P., Podol’skii, E. N.: Controllability of linear au-
tonomous systems with restrictions on the control. Differ. Equ. 11, 1465-1474 (1976).

[3] Korobov, V. I.: A geometrical criterion of local controllability of dynamical systems
in the presence of constraints on the control. Differ. Equ 15, 1136- 1142 (1980).

[4] Conti, R.: Return sets of a linear control process. J. Optim. Theory Appl. 41, 37-53
(1983)

[5] Bianchini, R. M.: Local Controllability, Rest States, and Cyclic Points, STAM Journal
on Control and Optimization, Vol. 21, pp. 714-720, (1983).

[6] Zverkin, A. M., Rozova, V. N.: Reciprocal controls and their applications, Differ.
Uravn., 23:2, 228-236 (1987).

[7] Korobov, V., Vozniak, O.: Return condition for oscillating systems. Visnyk of V. N.
Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and
Mechanics, 101, 5-20 (2025).
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On the Kolmogorov width as a characteristic of
reachable sets of infinite-dimensional systems
Alexander Zuyev (Magdeburg, Germany and Sloviansk, Ukraine)

The concept of n-width, introduced by Kolmogorov in his seminal 1936
paper [1], plays a crucial role in approximation theory and numerical anal-
ysis as a quantitative measure of how well a set can be approximated by
n-dimensional linear subspaces. Although natural computational appli-
cations of the Kolmogorov width to distributed-parameter systems have
mostly focused on estimating residuals of finite-difference methods, its po-
tential for characterizing controllability-type properties remains largely un-
explored.

In this presentation, we establish a general result concerning the n-width
of the image of a bounded set under a class of nonlinear operators acting
between two Banach spaces. Based on this representation, we investigate
the Kolmogorov width of reachable sets for bilinear control systems with
bounded inputs. As a result, we derive an explicit inequality relating the
Kolmogorov width of the reachable set to that of the set of admissible
controls. Such an inequality can be used to estimate the dimension of a
required finite-dimensional approximation, depending on a prescribed tol-
erance for approximating reachable states. Our construction is illustrated
with an example of a controlled bilinear Schrodinger equation.

This work is partially based on the results presented in [2].

[1] Kolmogoroff A.: Uber die beste Annéherung von Funktionen einer gegebenen Funk-
tionenklasse. Annals of Math., 107-110 (1936).

[2] Zuyev A., Feng L., Benner P.: Estimates of the Kolmogorov n-width for nonlinear
transformations with application to distributed-parameter control systems. IEEE
Control Systems Letters 8, 1877-1882 (2024).
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